# mx.symbol.khatri_rao¶

## Description¶

Computes the Khatri-Rao product of the input matrices.

Given a collection of $$n$$ input matrices,

$A_1 \in \mathbb{R}^{M_1 \times M}, \ldots, A_n \in \mathbb{R}^{M_n \times N},$

the (column-wise) Khatri-Rao product is defined as the matrix,

$X = A_1 \otimes \cdots \otimes A_n \in \mathbb{R}^{(M_1 \cdots M_n) \times N},$

where the $$k$$ th column is equal to the column-wise outer product $${A_1}_k \otimes \cdots \otimes {A_n}_k$$ where $${A_i}_k$$ is the kth column of the ith matrix.

Example:

>>> A = mx.nd.array([[1, -1],
>>>                  [2, -3]])
>>> B = mx.nd.array([[1, 4],
>>>                  [2, 5],
>>>                  [3, 6]])
>>> C = mx.nd.khatri_rao(A, B)
>>> print(C.asnumpy())
[[  1.  -4.]
[  2.  -5.]
[  3.  -6.]
[  2. -12.]
[  4. -15.]
[  6. -18.]]


## Usage¶

mx.symbol.khatri_rao(...)


## Arguments¶

Argument

Description

args

NDArray-or-Symbol[].

Positional input matrices

name

string, optional.

Name of the resulting symbol.

## Value¶

out The result mx.symbol