These tutorials introduce a few fundamental concepts in deep learning and how to implement them in MXNet. The Basics section contains tutorials on manipulating arrays, building networks, loading/preprocessing data, etc. The Training and Inference section talks about implementing Linear Regression, training a Handwritten digit classifier using MLP and CNN, running inferences using a pre-trained model, and lastly, efficiently training a large scale image classifier.


Gluon is the high-level interface for MXNet. It is more intuitive and easier to use than the lower level interface. Gluon supports dynamic (define-by-run) graphs with JIT-compilation to achieve both flexibility and efficiency. This is a selected subset of Gluon tutorials. For the comprehensive tutorial on Gluon, please see gluon.mxnet.io.

Contributing Tutorials

Want to contribute an MXNet tutorial? To get started, download the tutorial template.