Source code for mxnet.contrib.onnx.mx2onnx.export_model

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
#pylint: disable-msg=too-many-arguments

"""Exports an MXNet model to the ONNX model format"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import numpy as np

from ....base import string_types
from .... import symbol
from .export_onnx import MXNetGraph
from ._export_helper import load_module

[docs]def export_model(sym, params, input_shape, input_type=np.float32, onnx_file_path='model.onnx', verbose=False): """Exports the MXNet model file, passed as a parameter, into ONNX model. Accepts both symbol,parameter objects as well as json and params filepaths as input. Operator support and coverage - Parameters ---------- sym : str or symbol object Path to the json file or Symbol object params : str or symbol object Path to the params file or params dictionary. (Including both arg_params and aux_params) input_shape : List of tuple Input shape of the model e.g [(1,3,224,224)] input_type : data type Input data type e.g. np.float32 onnx_file_path : str Path where to save the generated onnx file verbose : Boolean If true will print logs of the model conversion Returns ------- onnx_file_path : str Onnx file path """ try: from onnx import helper, mapping except ImportError: raise ImportError("Onnx and protobuf need to be installed. " + "Instructions to install -") converter = MXNetGraph() data_format = np.dtype(input_type) # if input parameters are strings(file paths), load files and create symbol parameter objects if isinstance(sym, string_types) and isinstance(params, string_types):"Converting json and weight file to sym and params") sym_obj, params_obj = load_module(sym, params) onnx_graph = converter.create_onnx_graph_proto(sym_obj, params_obj, input_shape, mapping.NP_TYPE_TO_TENSOR_TYPE[data_format], verbose=verbose) elif isinstance(sym, symbol.Symbol) and isinstance(params, dict): onnx_graph = converter.create_onnx_graph_proto(sym, params, input_shape, mapping.NP_TYPE_TO_TENSOR_TYPE[data_format], verbose=verbose) else: raise ValueError("Input sym and params should either be files or objects") # Create the model (ModelProto) onnx_model = helper.make_model(onnx_graph) # Save model on disk with open(onnx_file_path, "wb") as file_handle: serialized = onnx_model.SerializeToString() file_handle.write(serialized)"Input shape of the model %s ", input_shape)"Exported ONNX file %s saved to disk", onnx_file_path) return onnx_file_path